Practical Short Signature Batch Verification

نویسندگان

  • Anna Lisa Ferrara
  • Matthew Green
  • Susan Hohenberger
  • Michael Østergaard Pedersen
چکیده

In many applications, it is desirable to work with signatures that are short, and yet wheremanymessages from different signers be verified very quickly. RSA signatures satisfy the latter condition, but are generally thousands of bits in length. Recent developments in pairing-based cryptography produced a number of “short” signatures which provide equivalent security in a fraction of the space. Unfortunately, verifying these signatures is computationally intensive due to the expensive pairing operation. Toward achieving “short and fast” signatures, Camenisch, Hohenberger and Pedersen (Eurocrypt 2007) showed how to batch verify two pairing-based schemes so that the total number of pairings was independent of the number of signatures to verify. In this work, we present both theoretical and practical contributions. On the theoretical side, we introduce new batch verifiers for a wide variety of regular, identity-based, group, ring and aggregate signature schemes. These are the first constructions for batching group signatures, which answers an open problem of Camenisch et al. On the practical side, we implement each of these algorithms and compare each batching algorithm to doing individual verifications. Our goal is to test whether batching is practical; that is, whether the benefits of removing pairings significantly outweigh the cost of the additional operations required for batching, such as group membership testing, randomness generation, and additional modular exponentiations and multiplications. We experimentally verify that the theoretical results of Camenisch et al. and this work, indeed, provide an efficient, effective approach to verifying multiple signatures from (possibly) different signers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Practicality of Short Signature Batch Verification

As pervasive communication becomes a reality, where everything from vehicles to heart monitors constantly communicate with their environments, system designers are facing a cryptographic puzzle on how to authenticate messages. These scenarios require that : (1) cryptographic overhead remain short, and yet (2) many messages from many different signers be verified very quickly. Pairingbased signa...

متن کامل

Batch Verification and Finding Invalid Signatures in a Group Signature Scheme

Batch cryptography has been developed into two main branches batch verification and batch identification. Batch verification is a method to determine whether a set of signatures contains invalid signatures, and batch identification is a method to find bad signatures if a set of signatures contains invalid signatures. Recently, some significant developments appeared in such field, especially by ...

متن کامل

Short one-time signatures

We present a new one-time signature scheme having short signatures. Our new scheme is also the first one-time signature scheme that supports aggregation, batch verification, and which admits efficient proofs of knowledge. It has a fast signing algorithm, requiring only modular additions, and its verification cost is comparable to ECDSA verification. These properties make our scheme suitable for...

متن کامل

Identification of Multiple Invalid Signatures in Pairing-Based Batched Signatures

This paper describes new methods in pairing-based signature schemes for identifying the invalid digital signatures in a batch, after batch verification has failed. These methods efficiently identify non-trivial numbers of invalid signatures in batches of (potentially large) numbers of signatures. Our methods use “divide-and-conquer” search to identify the invalid signatures within a batch, but ...

متن کامل

Batch Verifications with ID-Based Signatures

An identity (ID)-based signature scheme allows any pair of users to verify each other’s signatures without exchanging public key certificates. With the advent of Bilinear maps, several ID-based signatures based on the discrete logarithm problem have been proposed. While these signatures have an advantage in the fact that the system secret can be shared by several parties using a threshold schem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008